Latest Posts Recent Comments 문의사항 신고하기 이용안내 이벤트 포인트 리스트 공지사항 관리자문의

공지사항

고정공지

(자유게시판에서 질문 금지) 질문하신 유저는 통보 없이 "계정정리" 될수 있습니다.

Warning!  자유 게시판에서 질문을 하시면 바로 강퇴 됩니다.
분류 :
일반
조회 수 : 356
추천 수 : 2
등록일 : 2016.08.31 11:04:09
글 수 21,857
URL 링크 :

소수가 머길래 이렇게 거창한 제목을 붙였을까?

 

소수란 양의 약수가 1과 자기 자신뿐인 숫자를 말한다.

 

 




머 이런 숫자들인데 1과 소수를 제외한 모든 숫자는 모두 소수들의 곱으로 나타낼수 있다. 즉 숫자의 원자인 셈이다.


 

 

 

예를 들어 864를 소인수분해하면 2와 3의 소수 조합으로 나타낼 수 있더라는 것이다.

 

그런데 가만히 보면 소수의 규칙을 보면 이게 대체 규칙이 있는지 아리송하다.

 

 

 

어떨때는 간격이 좁고 어떨때는 간격이 넓고 도무지 종잡을 수 없는 패턴이다.

 

 


 


 

 

밥먹고 할짓없던 오일러가 이 소수의 규칙에 도전하게 되는데 소수를 저런식으로 사용해서 식을 유도하니까

자연에서 가장 완벽한 수로 평가받는 파이(3.14159... 원주률)값이 유도 되는 것이 아닌가???

 

이후 리만이라는 아저씨가 이 문제에 다시 도전을 하고

 

 

 

오일러의 수식을 약간 손봐서 이런식으로 고치고

 

 

리만의 제타함수라는 것을 완성하게 된다. 위에서 p가 소수

여기서 리만 가설이 나오게 되는데

 

제타함수의 비자명인 제로점은 모두 일직선상에 있다.

 

가설이라는데 가설이 먼지 눈에 안들어오는 불상사가 발생

좀 풀어서 이야기 해보자면

 

실수에서 소수는 규칙이 없는듯 하지만 복소수로 바꾸었을때는 규칙이 있는것 처럼 보인다.

복소수(실수 + 허수 , a + bi ) 에서 실수부가 1이상인 복소수 z에 대해서는 제타 함수 값이 0이 되지 않고

실수부가 0이하인 복소수 z=-2,-4, ... -2n에서는 제타함수값이 0이 된다는것을 알아냈다. (이것이 자명만 해)

이 중 비자명한 영역인 실수부가 0보다 크고 1보다 작은 복소수 z에 대해서는 0이 되는 지점이

무한히 많을 것이라고 생각된다 ( 고로 가설 )

 

 

 

 

에이씨 먼 소린지 모르겠다 싶으면. 이렇게 이해하면 된다. 저 증명이 완성되면 소수간에 규칙을 밝힐 수 있다.

그래서 그 당시 수학 천재라는 사람들이 이 문제를 증명하기 위해서 일평생을 걸며 연구를 했지만

죄다 병신이 되거나 문제 자체가 잘못되었다고 거꾸로 연구해봤지만 그것도 안됨...

 

그러다가 다들 포기하는 상황에서

 

이 리만 가설을 연구하던 수학자와 원자학을 연구하는 물리학자가 차를 마시다가

우연히도 제타함수의 제로점의 수식이 아래 처럼 된다고 이야기 하자

 

 


 

얼래리 물리학 분야에도 그런 수식이 있는데????

 


 

바로 원자핵의 불규칙한 에너지 간격과 제로점 간격의 수식이 완벽히 일치했던 것

이 말은 소수의 법칙이 곧 우주의 근본 법칙임을 암시하는 것

여전히 많은 수학자들의 도전이 있지만 결과는 정신이 헷가닥 하는 난제..

 

그런데 이것을 역이용한 사람들이 있었으니

 

 

 

 

 

 

 

로널드 라이베스트(Ron Rivest), 아디 샤미르(Adi Shamir), 레너드 애들먼(Leonard Adleman)

 

이라는 사람들이 만든 RSA 암호 시스템이다.

이 암호시스템의 원리는

 

 

 

 

B라는 사람이 공개키와 개인키(비밀키)를 만들어서 A에게 보내주면

A라는 사람이 B의 공개키를 가지고 문서를 암호화 하고 B라는 사람이 개인키로 복호화(암호해독)

해서 본다는 것이다. 즉 A가 B에게 문서를 넘기는 도중 누군가가 훔쳐 가더라도

공개키로 암호화 되어 있는데다가 공개키를 훔치더라도 개인키가 없으면 복호화가 불가능하기

때문에 완벽한 보안을 실현 할 수 있다.

 

이것이 가능한 것은 바로 간단하디 간단한 소수의 기본 원리이다.

즉 소수 2개로 두 곱의 결과를 아는 것은 매우 간단하지만

역으로 어떤 2개의 소수로 어떤 값이 나왔는지 아는 것은 매우 힘들다는 것이다.

왜냐면 아직 규칙성을 모르기 때문....

 

예를 들어 13*43 = 559라는 것은 쉽지만 559가지고 13,43을 찾는것은 힘들다는 것.

 

좀 더 디테일하게 보자면

 

큰 소수 p와 q를 선택하고

n=pq를 구한다. 여기서 n을 기억

φ(n) = (p-1)(q-1  -> n에 대한 서로소의 개수 ( 서로소란 공약수가 1이외에 없음을 의미 )

n과 서로소인 e를 선택하고 demod φ(n)=1 를 만족하는 수 d를 계산한다. (페르마의 소정리 이용)


여기서 공개키는 (n,e) 개인키는 (n,d)로한다.

이제 공개키(n,e) 로 암호화 하는데

이때 메세지가 m이라면

c=m^e·mod n

 

복호화(해독)을 하는쪽은 개인키(n,e)를 이용해서

m = c^d·mod n


메세지를 복호화 한다.

여기서 만약에 도둑놈이 (n,e)를 훔쳤다 하더라도

결국 이값으로 개인키 (n,d)를 구해야 하는데

demod φ(n)=1 수식에서 mod(나눈 나머지) 가 1이 되는

케이스는 미친듯이 많고 φ(n) 값 자체가 (p-1)(q-1)이라

n값을 가지고 소수 값을 맞춰야 하기 때문에 소수의 규칙을

모르고선 불가능에 가깝다.


여기서 소수 값을 얼마나 큰 값을 쓰느냐에 따라서 해독이 점점 어려워 지며

이 큰 소수값을 구해서 파는 회사도 있다.

100자리의 소수를 쓰는 것을 RSA-100이라 하고


RSA-100 = 15226050279225333605356183781326374297180681149613
          80688657908494580122963258952897654000350692006139


이 값이 위의 n


RSA-100 = 37975227936943673922808872755445627854565536638199
        × 40094690950920881030683735292761468389214899724061

이 값은 이 두수의 곱이다. 즉 이 두값을 알면 해독 가능

 

현재 RSA-2048까지 나와 있다.

RSA-2048 = 2519590847565789349402718324004839857142928212620403202777713783604366202070
           7595556264018525880784406918290641249515082189298559149176184502808489120072
           8449926873928072877767359714183472702618963750149718246911650776133798590957
           0009733045974880842840179742910064245869181719511874612151517265463228221686
           9987549182422433637259085141865462043576798423387184774447920739934236584823
           8242811981638150106748104516603773060562016196762561338441436038339044149526
           3443219011465754445417842402092461651572335077870774981712577246796292638635
           6373289912154831438167899885040445364023527381951378636564391212010397122822
           120720357


여기에 대한 소수의 곱은 공개되지 않고 있고. 알아내면 2억까지 덤으로 준단다.

단, 슈퍼 컴퓨터로도 만년쯤 걸린다고 하니 참조 할 것...

자, 만약 부자가 되고 싶다면 당장 이 리만 가설을 증명하면 된다.

그리고 공개키를 훔쳐서 해독한 뒤 유유히 돈을 다 훔치고 도망가면 된다.

우주의 원리까지 알게 될지도 모르는 것은 보너스

 

 

 

http://durl.me/8q3ehb

 

 

이전글 다음글

행운의포인트

2016.09.01
04:57:42
축하드립니다. ;)
겜비노님은 행운의포인트에 당첨되어 72포인트 지급되었습니다.

겜비노

2016.09.01
04:57:42
아래 링크는 관련 동영상 입니다.
시간 되실때 한번씩 보세요

촌아범

2016.09.01
04:57:42
어렵군요. 감사합니다

박goon

2016.09.01
04:57:42
어렵네요.

프리네

2016.09.01
04:57:42
[e:em10] 머리 아퍼요...

행운의포인트

2016.09.01
04:57:42
축하드립니다. ;)
프리네님은 행운의포인트에 당첨되어 6포인트 지급되었습니다.

agong

2016.09.01
04:57:42
잘 봤습니다. 감사합니다.
List of Articles
번호 제목 글쓴이 날짜 조회 수
공지 불편 ※ 박제 (댓글도배) 리스트 ※ (Updated 2019-08-21) [14] file 은소라 2019-08-13 2577
공지 정보 오에스 매니아 [ OSManias ] 게시판 및 댓글 이용 안내 [ V : 3.0 ] UzinSG 2019-04-30 3216
공지 정보 오에스 매니아 [ OSManias ] 게시판 이용 안내 [ V : 3.0 ] UzinSG 2019-04-30 2474
5945 일반 9월도 좋은 한달 되십시요. [5] 달림이 2016-08-31 112
5944 야 좀 씻고 다녀라 [6] 미소체리 2016-08-31 143
5943 앞으로 어떤 열애설이 나와도 넘기 힘든 임팩트 [6] 미소체리 2016-08-31 192
5942 짜파게티 받아서 신난 일본인 [16] 미소체리 2016-08-31 198
5941 일반 쌀쌀하내요 [5] ttls223 2016-08-31 82
5940 이거 놔라 놓으라고 [9] 미소체리 2016-08-31 108
5939 귀여운 솜뭉치 [8] 미소체리 2016-08-31 128
5938 수돗세 많이나오겠는데~~~ [10] 여포사랑 2016-08-31 145
5937 일반 혈세 관련 글이 올라오길래 문득 생각나서 올려보아요 [8] 홀리 2016-08-31 171
5936 손 씻었냥~~ [6] 여포사랑 2016-08-31 106
5935 나르냥.... [7] 여포사랑 2016-08-31 107
5934 넌~~누구냐 [5] 여포사랑 2016-08-31 113
5933 개 섯거라~~ [6] 여포사랑 2016-08-31 120
5932 일반 KFC레시피 유출 [7] 홀리 2016-08-31 141
» 일반 숫자의 원자 소수의 비밀을 아는자가 세상을 지배한다. [7] 겜비노 2016-08-31 356
5930 높으신 분들 특징 [5] lava 2016-08-31 145
5929 주식을 팔았다.gif [8] lava 2016-08-31 190
5928 일반 8월의 마지막... [4] 컴닥공 2016-08-31 82
5927 일반 비가 오니 날씨가 확춥네요 [4] 무념 2016-08-31 82
5926 일반 오늘은 8월 문화의 날입니다 [3] lava 2016-08-31 129
5925 일반 바람이 엄청부네요.. [5] 아잘리 2016-08-31 122
5924 정보 이런 대통령 어떠세요? [12] file 아이콘 2016-08-31 248
5923 정보 2016년 8월 31일 [6] file 노봉방 2016-08-31 190
5922 일반 8월 마지막 날입니다 ㅎㅎ [6] Ssungwu 2016-08-31 106
5921 일반 비바람이 엄청 나네요.... [5] 나연파파 2016-08-31 98
5920 정보 8. 31 수요일 [고발뉴스 조간브리핑] [7] 아이콘 2016-08-31 151
5919 정보 [오늘의 운세] 8월 31일 수요일 (음 7월 29일) [5] 아이콘 2016-08-31 104
5918 일반 현재의 오매는 운영자님만 관리가 가능합니다 [10] 관리자 2016-08-31 222
5917 일반 아빠 육아의 힘 [6] 응딱 2016-08-31 187
5916 (펌) 마티즈를 개조한 영국인 [15] maistory 2016-08-30 230
5915 850억 파티........... [12] 개누장 2016-08-30 178
5914 카메라 맨의 취향.gif [7] 개누장 2016-08-30 145
5913 수업에 열심인 학생.. [7] 개누장 2016-08-30 120
5912 건강 위해서 발떨어라? [8] 개누장 2016-08-30 146
5911 흔한 몰카단속 뉴스 [12] 개누장 2016-08-30 174
5910 일반 언제나 달라질까요? [8] Lakeside 2016-08-30 115
5909 일반 올해 유난히 많이 틀렸죠 [8] Lakeside 2016-08-30 164
5908 일반 집합 백선생 ㅋㅋ [8] Lakeside 2016-08-30 161
5907 일반 극한직업 [8] Lakeside 2016-08-30 199
5906 일반 민족사관고등학교 급식 [10] Lakeside 2016-08-30 224
5905 일반 벌초가서 발견한 열매 [10] lava 2016-08-30 228
5904 박스 제일 아래 있는 귤 [8] lava 2016-08-30 169
5903 마트에서 떼쓰던 아이 [9] lava 2016-08-30 155
5902 잡히면 디졌다 [6] file lava 2016-08-30 124
5901 일반 우리나라는 낭비되는 혈세가 너무 많네요. [10] 사소한 2016-08-30 150
5900 카메라맨의 취향 [5] file lava 2016-08-30 133
5899 동영상 마술 [5] 크로커스 2016-08-30 132
5898 일반 가을에 부치는 시 [5] 달림이 2016-08-30 190
5897 일반 기을이 왔내요 [4] 콩사랑 2016-08-30 92
5896 여탕 지갑 도난사건 [22] Monza 2016-08-30 254
5895 일반 식사 맛 있게 많이드세요...^^ [7] 조은사랑 2016-08-30 115
5894 개,,세마리 [11] 여포사랑 2016-08-30 152